Monocular Vision based Navigation in GPS-Denied Riverine Environments

نویسندگان

  • Junho Yang
  • Dushyant Rao
  • Soon-Jo Chung
چکیده

This paper presents a new method to estimate the range and bearing of landmarks and solve the simultaneous localization and mapping (SLAM) problem. The proposed ranging and SLAM algorithms have application to a micro aerial vehicle (MAV) flying through riverine environments which occasionally involve heavy foliage and forest canopy. Monocular vision navigation has merits in MAV applications since it is lightweight and provides abundant visual cues of the environment in comparison to other ranging methods. In this paper, we suggest a monocular vision strategy incorporating image segmentation and epipolar geometry to extend the capability of the ranging method to unknown outdoor environments. The validity of our proposed method is verified through experiments in a river-like environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MVCSLAM: Mono-Vision Corner SLAM for Autonomous Micro-Helicopters in GPS Denied Environments

We present a real-time vision navigation and ranging method (VINAR) for the purpose of Simultaneous Localization and Mapping (SLAM) using monocular vision. Our navigation strategy assumes a GPS denied unknown environment, whose indoor architecture is represented via corner based feature points obtained through a monocular camera. We experiment on a case study mission of vision based SLAM throug...

متن کامل

Monocular Vision based Autonomous Navigation for a Cost-Effective Open-Source MAVs in GPS-denied Environments

In this paper, we present monocular vision guided autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major problem of a monocular system is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem we solve a cost function, which consists of a drift-free altitude measurement together with ...

متن کامل

Autonomous Flight in GPS-Denied Environments Using Monocular Vision and Inertial Sensors

A vision-aided inertial navigation system that enables autonomous flight of an aerial vehicle in GPS-denied environments is presented. Particularly, feature point information from a monocular vision sensor are used to bound the drift resulting from integrating accelerations and angular rate measurements from an Inertial Measurement Unit (IMU) forward in time. An Extended Kalman filter framework...

متن کامل

Position and Orientation of an Aerial Vehicle through Chained, Vision-Based Pose Reconstruction

While a Global Positioning System (GPS) is the most widely used sensor modality for aircraft navigation, researchers have been motivated to investigate other navigational sensor modalities because of the desire to operate in GPS denied environments. Due to advances in computer vision and control theory, monocular camera systems have received growing interest as an alternative/collaborative sens...

متن کامل

Biologically Inspired Monocular Vision Based Navigation and Mapping in GPS-Denied Environments

This paper presents an in-depth theoretical study of bio-vision inspired feature extraction and depth perception method integrated with vision-based simultaneous localization and mapping (SLAM). We incorporate the key functions of developed visual cortex in several advanced species, including humans, for depth perception and pattern recognition. Our navigation strategy assumes GPS-denied manmad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011